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R E S E A R C H  IN T H E  F I E L D  OF P H E N O M E N O L O G I C A L  R H E O L O G Y  

M. P .  V o l a r o v i c h  a n d  N. I .  M a l i n i n  UDC 532.135 

Rheology has'  been extens ive ly  developed in the past  decades  - this  is the study of the deformat ion  and 
flow of m a t e r i a l s .  Numerous  p rob l em s  of rheology a re  p resen t ly  being published in the per iodica l  l i t e r a -  
ture  of the USSR and abroad.  Cer ta in  p rob l ems  in the theology of d i spe r se  and h igh -molecu la r  s y s t e m s  
have been genera l ized  in previous  surveys ,*  f r o m  which we see that Soviet sc ient i s t s  have contr ibuted ex-  
tens ive ly  to the fundamentals  and development  of theology.  We know that Shvedov founded the theology of 
d i spe r se  and h igh -molecu la r  s y s t e m s  in 1889 when he observed  the re laxat ion  of s t r e s s e s  in a gelatin sol 
and formula ted  the equation for  v i scoplas t ic  f Iow. t  

Numerous  monographs  and col lect ions appeared  abroad a f te r  the Second Wor ldWar ,  devoted to the v a r i -  
ous b ranches  of theology.  Some of these  have been t rans la ted  in Russ ian  and published in USSR. In this 
su rvey  we b r ie f ly  outline some of the r e su l t s  achieved by foreign r e s e a r c h e r s  in the field of phenomeno-  
logical  theology,  which have been published in the cited publications.  

The t e r m  " theology"  was introduced at the suggest ion of the Amer ican  sc ient is t  E. Bingham at the 
Third Internat ional  Symposium on the Theory  of Plas t ic i ty  (April, 1929). Even at that  t ime  it was felt  n e c e s -  
s a r y  - within the genera l  s y s t e m  of sc iences  - to s epa ra t e  that branch of knowledge devoted to p rob lems  of 
deformat ion  and flow in a va r ie ty  of m a t e r i a l s  which people encounter  in the i r  p rac t i ca l  and scientif ic ac -  
tivity, i.e., manufacture ,  p rocess ing ,  and application. More detailed information as to the origin of the 
t e r m  " theology,"  on the h i s to ry  of the es tab l i shment  of the f i r s t  socie ty  of theology,  on r e s e a r c h  into the 
p r o c e s s e s  of flow in m a t e r i a l s  - f r o m  the f i r s t  ef for ts  of Amenemhet  (the inventor of the wa te r  clock in 
ancient Egypt) to the p resen t  day - can be found in the books of Scot t -Bla i r  [1]. These publications also 
contain a su rvey  of the e a r l i e s t  r e s e a r c h  into the rheology of var ious  ma te r i a l s ,  p r i m a r i l y  those p ro jec t s  
completed p r io r  to the Second World War. 

The Society of Rheology was organized in the USA in 1929, and its cha i rman  for  a long t ime  was E. 
Bingham. F o r  a number  of y e a r s  the soc ie ty  published the Journal  of Rheology, and it r egu la r ly  puts out 
The Rheology Leaflet ,  l a t e r  changed to the Rheology Bulletin,  which publishes abs t r ac t s  in the field of rheo-  
fogy. At the init iat ive of Scot t -Bla i r ,  the Br i t i sh  Rheologis t ' s  Club was organized in England in 1940, and 
P r o f e s s o r  G. I. Tay lo r  s e rved  as its f i r s t  cha i rman .  This organizat ion,  also engaged in the r egu la r  publ ica-  
tion of rheology bullet ins,  was subsequent ly  renamed  the Br i t i sh  Society of Rheology. In conjunction with 
the English National Engineer ing Labora to ry ,  this socie ty  publishes indexes of pape r s  in the field of theology 
in England (see, for  example ,  [2]). A Rheology Group has been par t  of the National Science Resea rch  Center  
in ,France for about 10 y e a r s ,  and it publishes the specia l  theology journal  Cahier  du Groupe Franca i s  
d 'Etudes  de Rheologie. The Transac t ions  of the Society of Rheology have been published in the USA since 
1957. The journal  Rheologica Acta has been published in the Federa l  Republic of Germany s ince 1958, i .e. ,  
a f t e r  the Third Internat ional  Rheological  Congress .  

Rheology$ p re sen t ly  occupies  a definite posit ion in the genera l  s y s t e m  of sc iences ,  at the juncture of 
physics ,  chemis t ry ,  mechanics ,  and t echno logy  Rheology owes its posit ion at this juncture of the sc iences  

*M. P. Volarovich,  Kol[oid. Zh., 16, No. 3 (1954); M. P. Volarovieh,  I. I. Lishtvan,  and V. M. Naumovich, Inzh.-  
Fiz.  Zh., 5, No. 2 (1962); M. P. Volarovich and 1'4. I. Malinin, Inzh. -Fiz .  Zh., 10, No. 6 (1966). 
~'See the a r t i c l e  by M. P Volarovich and S. M. Levi  [Koiloid. Zh., 18, No. 2 (~56)] ,  devoted to the m e m o r y  of 
F. N. Shvedov. 

SThe definition of the word " theology"  can be found in an a r t i c l e  by one of the authors  of this paper  in the 
Phys ics  Encyclopedic Dict ionary,  VoL4 (1965), p. 435. 
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to the fact that its l imits have not yet been completely defined. The range of problems in rheology is quite 
broad and it deals with the problems of flow of deformation in the most varied of materials ,  beginning with 
Newtonian fluids and ending with the ideally elastic Hooke body. But, for example, the hydrodynamics of 
viscous fluids, which t rea t  a liquid as a continuous medium, is also concerned with the flows of Newtonian 
fluids. The corresponding solutions of these problems are  of interest  both f rom the standpoint of rheology 
and hydromechanics ,  and it is impossible to establish a c lear  demarcat ion between theology and hydro-  
dynamics.  There is also no c lear  boundary between rheology, on the one hand, and the theories  of elasticity,  
plasticity, and creep,  on the other hand. Unlike the cited sciences,  hydrodynamics ,  and the theor ies  of 
elast ici ty,  plasticity, and creep, rheology devotes more attention to problems of interrelat ionships between 
the p rocesses  of deformation and flow and the s t ructural  features  of various mater ia ls .  

On the other hand, rheology is c losely associated with that new branch of science - physicochemical  
mechanics - founded and developed in the works of Academician Rebinder and his school.* Physicochemical  
mechanics  covers  a broad range of subjects,  in part icular ,  the problems of s t ruc ture  formation in various 
mater ia ls  in connection with the colloidal p rocesses  and chemical react ions  taking place within them, makes 
extensive use of the methods of theology and theological  apparatus,  t 

Contemporary  theology can be divided into three basic sections:  phenomenological theology, exper i -  
mental rheology, and s t ruc tura l  theology. Structural theology is occasionally r e fe r r ed  to as microrheology;  
it establ ishes a relat ionship between the rheological proper t ies  and the s t ructure  of a material .  A some-  
what isolated phenomenon is the development of biorheology, which deals with r e sea rch  into the p rocesses  
of flow in blood, protoplasm, synovial and hormonal  fluids, etc., as well as the deformation of plant and 
animal t i ssues  as this re la tes  to the vital aspects  of an organism.  Biorheology - a branch of biophysics 
- e m p l o y s  essent ia l ly those  methods as phenomenological, experimental ,  and s t ructura l  theology; however, 
the relationship between the proper t ies  of deformation and flow in biological t issues and fluids and the 
physiological p rocesses  of plant and animals governs the unique nature of this branch of science, situated 
at the juncture of mechanics,  physics,  chemist ry ,  and biology. 

This survey is devoted to problems of phenomenological macrorheology.  Phenomenological theology 
establ ishes the relationship between the s t r e s se s  acting on a body, these s t r e s se s  having been brought about 
by s t ra ins  and their  changes with t ime. The mater ia l  beihg investigated is usually treated as a continuous 
medium which permanently occupies the space in which it is found. Examination of the problems of defor -  
mation and flow in products and s t ruc tures  of mater ia ls  descr ibed by various phenomenological equations 
serves  also as the subject mat ter  of phenomenological rheoiogy. The corresponding equations are  f requent-  
ly based for  given mater ia ls  on experimental  r e sea rch  performed with the aid of a var ie ty  of rheology in- 
strumentation. However, the problems of calculating the p rocesses  of deformation and flow are general ly  
resolved in theology by mathematical  methods analogous to those of the theories  of elasticity,  plasticity, 
and hydrodynamics.  This branch of theology may therefore  be re fe r red  to as theoretical ,  or mathematical ,  
theology. 

In connection with the above, of fundamental importance in rheology are the above-cited cha rac t e r i s -  
t ics of the s t r e s s e d - s t r a i n e d  state of matter ,  i.e., s t r e s ses ,  s t rains,  and their  derivat ives.  In the general  
ease these may be derivat ives of n-th o rde r  with respect  to time, where n -- 0, 1, 2 . . . . .  or it may be a 
fraction.$ The definition of s t ress ,  as a tensor  quantity, provided by Voigt** in the las t  century, has as yet 
undergone no change and exhibits no shortcomings which would serve as a basis for replacement,  correct ion,  
or  general izat ion of this macroscopic  charac ter is t ic .  As regards  deformation, the Cauchy definition of de-  
formation e ij in the fo rm 

1 

(u i is the displacement of the point in the direct ion of the x i coordinate line, with the comma denoting dif-  
ferentiation with respec t  to the corresponding space coordinate, so that ui, j = au i /0x  j) is applicable only 

* P. A. Rebinder, Izv. Akad.Nauk. SSSR,Otd.Khim. Nauk, No. 11 (1957). 
t See, for  example, Physicochemical  Mechanics of Soils, Clays, and Structural Materials [in Russian], Izd. 
Fan Uzbekskoi SSR, Tashkent (1966); Problems of Physicochemical  Mechanics of Fibrous  and Porous  Dis-  
perse  Structures and Materials  [in l~ussian], Zinatne, Riga (1967). 
$ In connection with the use of fractional  differentiation in the Liouville sense for  the descript ion of re laxa-  
tion propert ies  in high polymers ,  see: A. N. Gerasimov, Prikl. Matem. i Mekhan., 12, No. 3 (1948); G.L.  
Slonimskii, Dokl. Akad. Nauk SSSR, 140, No. 2 (1961). 
**D. I. Kutilin, The Theory of Finite Deformations [in Russian],  OGIZ Gostekhizdat (1947), p. 10. 
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to smal l  deformat ions  substant ia l ly  s m a l l e r  than unity. There  is no proof  that definition (1) is useful  for  
finite (large) deformat ions  of such m a t e r i a l s ,  for  example ,  as rubber  whose e las t ic  s t r a ins  may reach  a 
magnitude of 800-1000%. Reiner  [3, 4] notes  that any monotonical ly increas ing  function of the d i sp lacement  
may be t r ea t ed  as a m e a s u r e  of finite deformat ion ,  if it degenera tes  into the f i r s t  pa r t  of fo rmula  (1) in the 
case  of infinitely smal l  de format ions .  Reiner  provides  absolutely  no bas i s  for  this contention. In pa r t i cu la r ,  
he notes  that even the Cauehy m e a s u r e ,  in pr inciple ,  can be used to de te rmine  finite deformat ions ,  although 
it exhibits  ce r t a in  drawbacks  such as ,  for  example ,  in the deformat ion  of a ductile rod the magnitude of the 
deformat ion  will be a function of that  s ta te  of the rod which we r ega rd  as its initial s ta te .  

The theory  of finite deformat ions  has been developed more  fundamental ly abroad in the publications 
of Rivlin (see the a r t i c les  in [4, Vol. 1], [5]), Lodge [6], F red r i ckson  [7], and of Green and Adkins [8].* 
These  r e s e a r c h e r s  define finite deformat ion  with the re la t ionship?  

I ~ = - ~ -  (gi~ - -  a~), (2) 

where  gik is the me t r i c  t enso r  of a ma te r i a l  coordinate  s y s t e m  assoc ia ted  with the pa r t i c les  of the ma te r i a l  
being deformed  at the instant  under  considerat ion;  aik is gik in the initial s ta te ,  when the ma te r i a l  has not 
yet  been subjected to the effect  of the s t r e s s e s .  Using this definition of finite deformat ion  and its invar iant  
c h a r a c t e r i s t i c s ,  Rivlin der ived the physical  coupling equations of r a the r  genera l  form,  f r o m  which he found 
the e las t ic  potent ials  of Kuhn, Muni, et al. (see [9]) as specia l  ca ses ,  these potentials  having been proposed 
by the cited authors  for  r u b b e r - l i k e  m a t e r i a l s .  The Rivlin closed sy s t em of equations,  which he wrote  in a 
s y s t e m  of ma te r i a l  coord ina tes ,  and which, as is usual ,  contained equations of motion, continuity, boundary 
conditions,  and nonl inear  physical  equations,  makes  it poss ib le  to formula te  boundary-va lue  p rob l ems  for  
m a t e r i a l s  exhibiting g rea t  de format ions .  Cer ta in  of the p rob lems  were  examined by Rivlin [4, Vol. 1]; he re  
he invest igated a num ber  of nonl inear  effects ,  such as the appearance  of c o m p r e s s i v e  s t r e s s e s  at the ends, 
in the twist ing of round cyl indr ica l  objects ,  etc.  We should point out that this kind of phenomenon is actually 
encountered in rubbers  [9] and even in meta ls  (the Poynting effect [3]), although at low deformat ions  the 
magnitude of this effect  (i.e., the cor responding  s t r e s s  or  s train)  is insignificant; it d iminishes  in approx i -  
mate  propor t ion  to the square  of the pr incipal  deformat ion .  

Lodge [6] and F r e d r i c k s o n  [7] used definition (2) for  finite deformat ion  to invest igate  the p r o c e s s e s  
of e las t ic  a f te re f fec t  and viscous  flow. The rheotogicaI  equations which they der ived provide an explanation,  
in pa r t i cu la r ,  of such nonl inear  phenomena as the Wei s senbe rg  effect  (see Weis senbe rg  [10], F r e e m a n  and 
Weis senbe rg  [10], see  a lso  Pol let t  [11], Ward and Lord [11], Jobling and Rober ts  [4, Vol. 2], [11], Reiner  
[4, Vol. 1], [3], which a r i s e s  in the appearance  of no rma l  s t r e s s e s  in a ma te r i a l  subject  to the deformat ion  
of pure  shea r .  P rob l em s  f r o m  the theory  of finite deformat ions  a re  also covered  in the P r a g e r  book [12]. 

Yet another  means of explaining and mathemat ica l ly  descr ib ing  the effects  of t enso r  nonl inear i ty  (for 
examPle , the Weis senbe rg  effect) was suggested by Oldroyd [13]. Many physical  laws employed in rheology,  
as indicated ea r l i e r ,  contain de r iva t ives  with r e s p e c t  to t ime ,  e.g. ,  the de r iva t ives  of s t r e s s e s  or the de-  
r iva t ives  of s t r a ins ,  with r e spec t  to t ime .  An equation of r a t he r  genera l  form,  descr ib ing  in pa r t i cu l a r  
the effects  of v iscous  flow and e las t ic  a f te re f fec t ,  has the f o r m  

~ + ~,~;~ = 200 (e,~ + x~e~), (3) 
t 

where  Pik = Pik + P6ik is the s t r e s s  deviator ;  Pik is the s t r e s s  tensor ;  p is the hydros ta t ic  p r e s s u r e ;  5ik is 
the Kronecke r  delta; @ik is the s t ra in  ra te ;  X1, X2, and V0 are  the p a r a m e t e r s  of the ma te r i a l .  The dots de -  
note different ia t ion with r e s pec t  to t ime .  The rheological  equation (3) does not d i f fer  f r o m  the equations for  
e las t ic  sols  (a L e s e r s i c h  body) and re laxing gels (a Je f f r i e s  body) [3]. The magnitude of the der iva t ive  is 
a function of whether  or  not the reckoning s y s t e m  is fixed or  whether  the coordinate  axes t r ans la te  together  
with the fluid par t ic le ,  or  if they additionally a re  in rotat ion.  

Oldroyd contends that the physica l  law assoc ia t ing  s t r e s s e s  and s t r a ins  should be independent of some 
a r b i t r a r y  se lect ion of a coordinate  s y s t e m .  The only invar iant  coordinate  s y s t e m  is the ma te r i a l  (convec- 
tion) coordinate  s y s t e m  whose axes  a r e  assoc ia ted  with the par t i c les  of the medium being deformed.  The 

*Academician L. I. Sedov [see L. I. Sedov, Introduction to the IV[echanies of Continuous Media [in Russian],  
FM (1962)] contr ibuted s ignif icant ly to the development  of the nonl inear  mechanics  of continuous media  and 
the theory of finite deformat ions  in the USSR. 
#This definition of finite deformat ion  is not the only one poss ib le  (see, for  example ,  the Kutilin book cited 
e a r l i e r ) .  
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quantities Pik = ~ P i k / ~ t  and eik = ~ e i k / ~ t  are thus convection derivat ives associated with the moving 
and rotat ing sys tem of coordinates which is simultaneously being subjected to strains in conjunction with the 
material .  Let us consider  the case of pure shear.  Oldroyd derives a nonlinear relationship between the 
shear  component of the s t ress  tensor  Pxy and the velocity gradient D. Oldroyd interprets  this relationship 
as the law of non-Newtonian flow of a viscous fluid. 

In establishing the relat ions between the s t r e s ses  and strains,  without which solution of the var ious  
working problems of mathematical  rheology would be impossible, it is frequently useful to employ mechani-  
cal models. The lat ter  are  assembl ies  of various elements such as springs, ductile elements (hydraulic 
shock absorbers  or  dampers) ,  d ry- f r ic t ion  units, etc., whose individual points are  displaced under the ac-  
tion of the forces  applied to them. Some of the simplest  models describing phenomena in actual media, i.e., 
elasticity,  viscosity,  plasticity, and combinations of these simplest  of proper t ies  (viscoelasticity, v isco-  
plasticity, and the behavior of an e l a s t i c - p l a s t i c  material) ,  has been covered in reviews by Reiner [3, 4, 
Vol. 1]. A par t icu lar ly  detailed study for the method of mechanical models is found in [14], where the chap- 
t e r s  writ ten by Persoz  provide a description,  in addition to the traditional,  of such new models as well. 
These include, for example, the Kdphs model in which the plastic deformation is d i rect ly  proportional to 
the applied s t ress .  A model with a regulator  is useful to descr ibe phenomena such as dilatation (an e leva-  
tion in the effective v iscos i ty  with an increase  in the velocity gradient). The introduction of a l imiter  e le-  
ment makes possible the modeling of such phenomena as hardening under plastic deformation.* 

The use of models with a limited number of elements usually resul ts  in laws of deformation in time 
(or in laws of variat ions in s t ress) ,  which are poorly described by the curves  observed for  actual mater ia ls .  
This naturally resul ts  in a trend toward fur ther  complication of the mechanical models.  Thus, for example, 
Alfrei [15] extensively uses  the so-cal led model C to descr ibe the l inear  proper t ies  of high polymers;  this 
model is a se r ies -connec ted  combination of Hooke and Newtonian elements,  in addition to a number of Kelvin 
elements.  For  C models use is frequently made of the concept of the distribution (spectrum) of the t imes 
of elast ic aftereffect  or, more exactly, the distribution of compliances with respec t  to the t imes of elast ic  
aftereffect  [15-17]. If the set of Kelvin elements is finite, we have a line spectrum. We also use the con- 
cepts of continuous spectra,  when the models contain an infinite multiplicity of elements which make up 
these models. In addition to the general ized Kelvin model, the generalized Maxwell model [15-17] has also 
gained widespread acceptance,  and it contains a finite or infinite number of Maxwell elements,  connected in 
parallel.  

The general ized Kelvin and Maxwell models correspond to l inear equations descr ibing the proper t ies  
of the material .  Similar construct ions for  nonlinear bodies were achieved by the Japanese authors Sawaragi 
and Tokumaru [18], Sawaragi, Taniguchi, and Furuichi  [18], who in the cited re fe rences  investigated models 
which, in addition to simple Hooke and Newtonian elements,  also contain finite or  infinite sets of t h r e e - e l e -  
ment links; an individual link involves the parallel  connection of a spring, shock absorber ,  and dry- f r ic t ion  
unit. An assembly  of such links is equivalent to the introduction of functions of compliance distribution with 
respec t  to the t imes  of elast ic  aftereffect  and the yield point. Sawaragi and Tokumaru [19] use a model of 
element groups connected in parallel .  Each group is an infinite set of four -e lements  links connected in para l -  
lel, with each link made up of a se r ies -connec ted  I~ewtonian element and the th ree-e lement  assembly r e -  
fe r red  to in the above-cited re fe rence  [18]. Sawaragi and Fukuda [19] use a model in the form of a para l le l -  
connected set of groups, each of which is made up of an infinite number of links connected in parallel,  with 
each link made up of a Hooke element connected in ser ies  with another Hooke element, with the last  con- 
nected in parallel  with the d ry- f r ic t ion  unit. The Japanese models describe,  in par t icular ,  such p rocesses  
as the fatigue of e las tomers ,  and their significant drawback is the excess ive  complexity. 

The construct ion of a mechanical  model for an actual material  is the f i rs t  step in the solution of the 
corresponding problems of phenomenological theology, which deal with the various p rocesses  of de fo rma-  
tion for such a material ,  as encountered in actual practice.  In addition this step is entirely unnecessary;  
the physical (rheological) equations needed for  the solution of the working problems can be compiled without 
the use of mechanical  models. However, the construction of mechanical  models is usually of some advan- 
tage; by analyzing a model we can prove, for example, the noncontradictory nature of the equations which we 
are using, and also the corresponding laws of thermodynamics ,  etc. A model made up of l inear  elements,  

* A model with destruct ion elements is proposed in the following paper:  M. P. Volarovich, N. I. Gamayunov, 
and N. N. Sokolov, Kolloid. Zh., 28, No. 4 (1966). 
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i .e . ,  of sp r ings  and shock a b s o r b e r s ,  in t e r m s  of its mechanica l  p r o p e r t i e s  is equivalent  to a medium sub-  
jec t  to a l i n e a r  d i f fe ren t ia l  equation which, in o p e r a t o r  form,  is wr i t t en  as follows [3, 14, 20], L e a d e r m a n  
[4, Vol. 2], Lee [5, 20]: 

clt ~ d t  ~ ~ ,  
i = 0  i ~ 0  

where  a 0 = 1, while a i and b i a r e  the p a r a m e t e r s  of the m a t e r i a l . t  

Di f ferent ia l  equations such as (4) can be r ewr i t t en  to a fo rm containing the in tegra l  Vo l t e r r a  ope ra to r .  
We can t r e a t  the ke rne l  of the r e su l t i ng  l i nea r  V o l t e r r a  in tegra l  equation as en t i r e ly  independent of the op-  
e r a t o r  equation (4) or  independent of the co r re spond ing  rheo log ica l  model.  Here  we r e t a in  only the genera l  
B o l t z m a n n - V o l t e r r a  ru le  of l i nea r  supe rpos i t ion  accord ing  to which deformat ion  r e su l t i ng  f rom the s t r e s s e s  
AO" 1 + AO" 2 iS equal to the sum of the de fo rmat ions  r e su l t i ng  f rom Aa 1 and Ao" 2. 

The methods to d e s c r i b e  the rheo log ica l  p r o p e r t i e s  of l i nea r  v i s c o e l a s t i c  m a t e r i a l s  with mechanica l  
models ,  o p e r a t o r  equat ions such as (4) and V o l t e r r a  l i n e a r  in teg ra l  equat ions are  the most  genera l ,  and 
they a r e  sui table  for  p r o c e s s e s  in which the s t r e s s e s  or  s t r a i n s  va ry  a r b i t r a r i l y .  To de t e rmine  the p a r a m -  
e t e r s  of the model or the p a r a m e t e r s  of the o p e r a t o r  equations,  in p a r t i c u l a r ,  the in tegra l  equat ions,  we 
need other  methods of desc r ip t ion ,  which may, perhaps ,  not d is t inguish  t h e m s e l v e s  by t h e i r  gene ra l i t y ,  but 
which are  t h e r e f o r e  more  c lo se ly  a s soc i a t ed  with a c e r t a i n  type of exper imen t ,  pe r fo rmed  on an actual  
m a t e r i a l .  Among the l a t t e r  we include those methods based  on the de te rmina t ion  of the c r e e p  function f rom 
expe r imen t s  on c reep ,  and on the de t e rmina t ion  of the r e l axa t ion  functions f rom expe r imen t s  on the r e l a x a -  
tion of s t r e s s e s ,  dynamic  compl iance  I*, or  the dynamic  modulus E*. These  las t  quant i t ies  a r e  de t e rmined  
f rom expe r imen t s  pe r fo rmed  at v a r i a b l e  s t r e s s e s  a and s t r a i n s  e ,  with a and e va ry ing  with t ime  a c c o r d -  
ing to a s inusoida l  law. With v i s c o e l a s t i c  m a t e r i a l s  the deformat ion  in the genera l  case  tags in phase f rom 
the applied s t r e s s .  

The quant i t ies  I* and E* a re  t r e a t ed  as complex;  th is  t r e a tmen t  is a s soc i a t ed  with the r e p r e s e n t a t i o n  
of o and ~ and, consequent ly ,  of I* and E* in the fo rm of vec to r  d i a g r a m s  on a complex  plane as  is f r e -  
quently done in the case  of ha rmon ic  o sc i l l a t i ons .  Comple te ly  to define the v i s c oe l a c t i c  p r o p e r t i e s ,  we 
must  know of the compl iance  I(t) = a (t) /a in the c r e e p  exper imen t  with constant ~ with t ime t ranging  f rom 
ze ro  to ~ or  with the r e l axa t ion  modulus E(t) = a ( t ) / e  in the e xpe r i m e n t  on r e l axa t ion  at constant  d e f o r m a -  
tion fo r  the same  range of t ime  t f r om ze ro  to ~o or  with the complex  compl iance  as a function of the an-  
gu la r  f requency c0 (for al l  poss ib le  va r i a t i ons  in f requency f rom ~ = 0 to w = ~) [*(w) = ~ (t)/~r(t), o r  for  the 
complex  modulus E*(c~) = a( t ) /e ( t )  at f r equenc ies  in the in te rva l  [0, ~) .  

As was mentioned e a r l i e r ,  in the de t e rmina t ion  of I*(r and E*(w), e and a a r e  s inusoida l  functions 
of t. These  functions a r e  complex  quant i t ies  and contain r e a l  and imag ina ry  pa r t s .  To de t e rmine  the 
v i s c o e l a s t i c  p r o p e r t i e s  of a m a t e r i a l ,  it is suff icient  to know one of these four functions of c0 (moreover ,  
we must  have the constants  which d e t e r m i n e  the e l a s t i c i t y  of a m a t e r i a l  and its duct i l i ty ,  if e l a s t i c  and v i s -  
cous s t r a i n s  a r i s e  in the de fo rmat ion  of the ma te r i a l ) .  F o r  example ,  if we know the imag ina ry  par t  of the 
complex  modulus of e l a s t i c i t y  over  the en t i re  range  of f requenc ies  f rom 0 to ~ ,  f rom these  data we can 
a l so  d e t e r m i n e  the r e a l  pa r t  of E* as a function of r [16]. 

Each of the a b o v e - e n u m e r a t e d  methods is convenient for  the solution of a specif ic  range of p rob lems .  
F o r  g r e a t e r  un ive r sa l i t y  of the methods of phenomenological  theo logy  in the case  of a l i nea r  v i s c oe l a s t i c  
m a t e r i a l ,  he re  we must  have at our d i sposa l  methods for  the t r ans i t i on  f rom one method of d e s c r i b i n g  the 
p r o p e r t i e s  of a m a t e r i a l  to another  method. The mos t  comple te  review of such methods is found in [16]. 
The f igure  shows a d i a g r a m  of the methods  to d e s c r i b e  the l i nea r  v i s c o e l a s t i c  p r o p e r t i e s  of m a t e r i a l s  and 
the metbods of changing f rom one to the other ,  this  d i a g r a m  having been bo r rowed  f rom the  ci ted mono-  
graph (see a lso ,  Gross  [11]). Many of the methods for  the t r a n s i t i on  f rom one desc r ip t ion  method for  the 
p r o p e r t i e s  of a l i nea r  v i s c o e l a s t i c  m a t e r i a l  to another  a r e  a s soc i a t ed  with extens ive  ma thema t i ca l  d i f f icu l -  
t i es .  In pa r t  these  d i f f icu l t ies  have not yet  been overcome;  the a r r o w s  in the d i a g r a m  indicat ing the t r a n s i -  
t ion f rom one de sc r ip t i on  (indicated by a rec tangle)  to another  t he re fo re  do not connect al l  of the r ec t ang l e s .  

In c e r t a i n  c a s e s ,  for  the t r an s i t i on  f rom one desc r ip t ion  to another ,  we use approx imate  methods (see 
[16], L e a d e r m a n  [4, Vol. 2]), e .g . ,  to ca lcu la te  the r e l axa t ion  spec t rum f rom the function E(t) of the r e l axa t ion  

tChap te r  II[ of Yu. N. Rabotnov 's  monograph [Creep of S t ruc tura l  E lements  [in Russian] ,  Nauka (1966)] is de -  
voted to the behav ior  of l i n e a r  v i s c o e l a s t i c  media .  A l a rge  por t ion of this  book is devoted to the c r e e p  of 
me ta l s  at high t e m p e r a t u r e s ,  and to an examinat ion  of the co r r e spond ing  phenomenotogical  p rob lems .  
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modulus. In cer ta in  cases ,  existing exact methods of t ransi t ion are  inconvenient for pract ical  calculations; 
despite the existence of some exact solution, we therefore  also use approximate calculations. For  example, 
we know of an exact solution for the problem of determining the relaxation spec t rum from dynamic data 
(from the complex modulus of elast ici ty,  f rom its real  and imaginary part as functions of the angular ve-  
locity), as derived by Gross.  However, for  practical  calculations this is an inconvenient solution, since for 
the calculations of the above-enumerated dynamic functions they must be specified in the form of analytical 
functions. In actual pract ice,  we therefore  proceed in the following fashion: f rom the experimental  data we 
usually derive the curves  for  the dynamic modulus and for  the modulus of the losses  as a function of w, 
with the analytical equations descr ibing these functions, as a rule, unknown. Here it is more  convenient to 
use approximate methods (see, for  example, Leaderman [4, Vol. 2]).* 

The above-enumerated  theories  assume that the medium exhibits constant proper t ies  that are inde- 
pendent of t ime and that the effects of aging, i.e., the t ime variat ions of the mechanical  proper t ies  of the 
material ,  can be neglected. For  many mater ia ls  (in par t icular ,  for  concretes ,  cer tain types of polymer  
mater ia ls ,  and disperse  systems) aging is significant. Certain r e s e a r c h e r s  therefore  attempted to general ize 
the theories  of v iscoelas t ic i ty  for media whose proper t ies  are  a function of their  age . t  One such attempt 
is made by Bismuth and Saunier in [21, part 2], who introduced a t e rm containing time in explicit fo rm into 
an operator  equation such as (4). 

Most of the mater ia ls  encountered by r e s e a r c h e r s  in the field of rheology are  nonlinear in nature. 
Many mater ia ls  exhibit a l inear elastic,  viscous,  or  viscoelast ic  behavior  in the region of low s t resses ,  
but behave as nonlinear mater ia ls  at high s t resses .  A certain boundary exists in this case to separate  the 
regions of l inear  and nonlinear behavior.  The l inear viscoelast ic  mater ia ls  are re fe r red  to by Leaderman 
[22]* as mater ia ls  subject to the l inear B o l t z m a n n - V o l t e r r a  principle of superposition, and their  de forma-  
tion proper t ies  are  descr ibed by l inear Volterra  integral equations with different kernels.  It is Lee ' s  opin- 
ion [5, 20] that l inear and nonlinear mater ia ls  are most easi ly distinguished in the following manner. K 
s imi lar  forces  Pi = CiP(t) acts on completely identical i tems at s imi lar  points (the shape of the item is i r -  
relevant),  and these fo rces  are  oriented identically with respect  to the axes of this item, the deformations 
of the l inear mater ia l  va ry  with time t in proport ion to the forces  Pi, while for an object made of a nonlinear 
material  the deformations will not be proportional  to Pi- 

It is somet imes  incor rec t ly  assumed that a l inear material  exhibits a l inear ~ -  ~ diagram. This is 
an ent irely unacceptable cr i te r ion  with regard  to viscoelast ic  mater ia ls .  The very  simplest  l inear mater ia l  
described by the mechanical  Maxwell model will exhibit a nonlinear d iagram (see, for example, Alfrei [15]). 

Reiner [3] distinguishes physical and tensor  nonlinearity. Physical  nonlinearity is evidenced by the 
fact that sca lar  quantities charac ter iz ing  s t resses ,  deformations,  and ra tes  of deformation (for example, 
their  invariance), are  associated with others by nonlinear relat ionships which can be investigated, for  ex- 
ample, in the case of uniform deformation patterns (simple tension, simple shear,  etc.). For  mater ia ls  
exhibiting nonlinear viscoelast ic  proper t ies  (such mater ia ls  include, in part icular ,  many of the high poly- 
mers) the creep s t ra ins  for specified values of t and for  various values of or, for example, grow in p ropor -  
tion to o -n, where n > 1 (Staverman and Schwarzl [23]), or  in proport ion to sh(a/crm), where n and a m  are 
the pa ramete r s  of the mater ia l  (Findley [24]), etc.** 

Consideration of the simultaneous elast ici ty and viscosi ty  effects in solving problems of rheology for 
a physically nonlinear mater ia l  general ly  involves considerable mathematical  difficulties. Fortunately,  for 
most  cases  of importance under pract ical  conditions, one of the components of deformation - elasticity,  v i s -  
cosity, plasticity, or the deformation of elast ic aftereffect  - usually predominantes over  the others.~f~ " 

*In the USSR, a number of investigations devoted to the methods of descr ibing l inear viscoelast ic  proper t ies  
of mater ia l s  and to find methods of making the transi t ion f rom one method to another, have been performed 
by Shermergor ,  Prikl.Mekhan. i Tekh. Fiz. ,  No. 1 (1960); Fizika i Metall0vedenie, 9, No 2 (1960). 

See, for  example, N. Kh. Arutyunyan's  book: Certain Problems in Creep Theory [in Russian], Gostekhteo- 
retizdat (1952), as well as the above-cited Rabotnov monograph. 

The cited ar t ic les  make up the repor t  of the Committee on Terminology of the USA Society of Rheology. 
**A survey of Soviet and foreign papers devoted, in part icular ,  to an examination of the theories  of non- 
l inear viscoelas t ic i ty  can be found in the Malinin report  published as The Transact ions  of the Second All- 
Union Congress on Theoret ical  and Applied Mechanics, No. 3, Mechanics of Solids [in Russian] (Moscow, 
1964), Nauka (1966). 
*tSee M. P. Volarovich, the footnote at the beginning of the article.  
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In calculating the flow p rocesses  it is therefore  sufficient to account only for  that one of these components,  
neglecting all the others.  Thus, in examining the laws of flow in d isperse  systems,  solutions, and melts of 
high polymers  we usually neglect the elast ic strains,  as well as the deformations of elastic af tereffects  as 
small in compar ison with the i r revers ib le  effects - v iscosi ty  or  plastici ty strains.  The effect of physical 
nonlinearity for viscous and plastic mater ia ls  becomes evident in the fact that the flow diagram - the strain 
rate as a function of the acting s t r ess  - is a curve. In investigating viscosi ty  our attention is basical ly  de- 
voted to the viscous behavior of the mater ia l  in the case of shear strains,  while the flow diagram (the con- 
s is tency curve [1, 3]) is the curve showing the shear  ra te  ~ as the shear  s t r e s s  ~-. In phenomenological 
and s t ructural  theology, the effective v iscos i ty  is of great  significance, and this quantity is defined by the 
equation* 

= ~off~}, (5) 

with the quantity ~eff in the general  case being a function of the shearing s t r e s se s  ~-. For  Newtonian fluids 
Veff = const. This is the way liquid low-molecular  substances which contain no suspended macroscopic  
par t ic les  behave when the shear  ra tes  range f rom 7 = 0 to the high values of ~ at which turbulent flow be-  
gins. At low concentrat ions for  the sol id-phase par t ic les  in the liquid, a d isperse  sys tem continues to be-  
have as a true Newtonian fluid (see, for example, the well-known work of Einstein). However, if the con- 
centrat ion a r i ses  above some cr i t ical  level, we find effects of anomalous viscosity;  here  the effective v i s -  
cosi ty is a function of the shearing s t r e s se s  ~--T Fo r  various d isperse  sys tems,  under a var ie ty  of condi- 
tions, the effective v iscos i ty  7?eff may diminish or increase with a r i se  in ~-. Scott-Blair ,  in his monographs 
[1], analyzes in detail the fac tors  leading to a change in ~eff; these are  closely associated with the change in 
the s t ructure  of the sys tems during the flow process .  In this connection, the effects of anomalous viscosi ty  
are of great  interest  for s t ructural  theology; some of these effects have been described by Richardson [25]. 

The effect of ra is ing the effective v iscos i ty  with an increase  in the shear  rate in the case of d isperse  
sys tems and high polymers  is encountered quite r a re ly  in pract ice.  Conversely,  we very  frequently find the 
inverse phenomenon in which the effective v iscos i ty  is reduced with a r i se  in ~-. If the solid-phase concen- 
t rat ions in suspensions and in colloidal solutions or  in polymer solutions are  not too great,  and if the tem-  
pera tures  are  not too low (this la t ter  c i rcumstance  is par t icular ly  important in examining flows of polymer  
melts) the system, begins to flow at negligible s t r e s se s  of ~- --  0. Consequently, the sys tem is a non-New- 
ionian fluid: the l imit shearing s t r e s s  is vir tual ly equal to zero, while ~?eff is a variable quantity. Fo r  solu- 
tion of the problems of phenomenological rheology it is important to know, for this case, the law governing 
the relationship between the s t r e s s e s  ~- and the strain rate 7. This law must sat isfy the obvious but cont ra-  
dic tory requirement  of, f i r s t  of all, cor responding to the experimental  data with a sufficiently high degree 
of accuracy,  and secondly, it must be as simple as possible, since the range of problems capable of solution 
with con temporary  mathemat ics  and cybernet ics  facil i t ies is markedly reduced as the rheological  law is 
made increasingly complicated. 

To solve the problems of flows for melts  and solutions of polymers ,  ra ther  extensive use is made of 
the Os twald-De  Vale "power law" [26-29] 

= K ~  ~ , (6)  

where K and n are  the pa rame te r s  of the material ;  the Prandtl  theological  equation [26, 28, 29] 

= AArsh -C- (7) 

(A and C are parameters )  and the E y r i n g - P o w e l l  equation [26-29], whose left-hand member ,  as in (6) and 
(7), is % and its r ight-hand member  is the sum of the r ight-hand members  of Eqs. (6) and (7). 

As the t empera tu re  is reduced, or  as the sol id-phase concentration in d isperse  sys tems or solutions 
of high polymers  is increased,  the effects of anomalous v iscos i ty  become increasingly evident.$ Under c e r -  
tain conditions, the effective v iscos i ty  ~eff for cer tain cr i t ical  s t r e s ses  var ies  so rapidly** and in such a 

* See P. A. Rebinder and N. V. Mikhailov, Kolloid. Zh., 17, No. 2 (1955). 
T The effects of anomalous v iscos i ty  for  concentrated ~-sperse  sys tems are  discussed by the authors in a 
survey ar t ic le  [Inzh.-Fiz.  Zh., 10, No. 6 (1966)]. 
$See the authors '  survey [[nzh.-Fiz.  Zh., 10, No.6 (1966)]. 
**P. A. Rebinder descr ibes  the exper iments  in which, in the shear  of clay s t ruc tures ,  a drop in effective v i s -  
cosity by a factor  of 107 and more  was observed (P. A. Rebinder,  Physicomechanical  Mechanics [in Russian], 
Znanie (1958); also see his comments  to the t ranslat ion of this book [4, Vol. 1]). 
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Fig.  1. D iag ram  i l lus t ra t ing the methods of d e s c r i b -  
ing l inea r  v i scoe las t i c  p r o p e r t i e s  and t rans i t ions  
f r o m  one to the other; I) the complex compl iance  
function I*(w); II) the complex modulus function E*(c0); 
Ill) the c r eep  function ~(t); IV) the re laxat ion  function 
r V) the dis t r ibut ion function for  the a f te ref fec t  
t imes;  VI) the dis t r ibut ion function for  the re laxat ion 
t imes;  a) the Stielt jes integral;  b) an a lgebra ic  inve r -  
sion fo rmula  in complex var iables ;  c) the F o u r i e r  
t r ans fo rm;  d) the Laplace  t r ans fo rm;  e) a lgebra ic  
equations; f) Vo l t e r r a  in te rgra l  equations; g) integral  
t r ans fo rma t ions .  

narrow range of values for T that for a phenom- 
enological description of the processes of the 
flow of such media it is more convenient to use 
the nonanalytical relationships than relation- 
ships such as (6) and (7), and those relation- 
ships similar to these, for which ~?eff is a smooth 
function of the stresses ~-. The value of the non- 
analytical functions in rheology has been stressed 
in the surveys by Prager ([4, Vol. 1], W. Prager 
[30]). 

As an example  of a nonanalytical  re la t ion-  
ship used extensively  in con tempora ry  rheology 
we can cite the Bingham flow law (see [1, 3, 30- 
32], a Bingham body is a degenera te  Shvedov 
body, see [3]), which in the one-dimensional  case  
is wri t ten mathemat ica l ly  in the f o r m t  

= 0 (~ -< 0), 
(8) 

= 0 -{- ~pi9 (~ > 0), 

where  0 is the yield point of the sy s t em (the 
l imit  shear ing  s t ress) ;  ~pt is the plas t ic  v i s -  
cosi ty .  The Bingham flow law provides  a good 
descr ip t ion  of the flow of var ious  d i spe r se  s y s -  
t ems  such as,  for  example ,  paints ([3, 31, 32], 
Bantoft [13]), food products  ([1, 3], 8teiner  [13]), 
peat [1, 3], and s imi l a r  ma te r i a l s .  

F r o m  among the nonanalyt ical  re la t ionships  which make provis ion for  the r i s e  in the v i scos i ty  r e s i s -  
tance with an inc rease  in the veloci ty  gradient,  let us reca l l  the Casson equation 

= 0 (~ -~ ~3), 

~ T = K 0 + K I V  ~ (~>~3)  (9) 

(K 0 and K 1 are  the p a r a m e t e r s  of the mater ia l ) ,  which finds applicat ion to desc r ibe  the flow of typography 
inks (Casson [13], Bantoft [13]), and of blood (Merril ,  Marget ts ,  Cokelet,  Gilliland [21, par t  4], Copley [33]). 

As the concentra t ion of the solids in the d i spe r s e  s y s t e m  inc reases ,  the yield point 0 of the sy s t em 
(or the p a r a m e t e r  K 0 in (9)) usually i nc reases  more  rapidly  with the concentra t ion c than the plas t ic  v i s -  
cosi ty  Vpl (as in the case  of the p a r a m e t e r  K 1 in (9)). Thus, with high c the contribution of the second t e r m  
to the overa l l  magnitude of T in (8) and (9) is f requent ly  negligibly smal l  in compar i son  with the yield point 
0. Relat ionships  such as (8) and (9) in this case  degenera te  into re la t ionships  of ideal plast ici ty;  Van [ t e r -  
son [34] s t r e s s ed  the possibi l i ty  of using the methods of the theory  of p las t ic i ty  to desc r ibe  the p r o c e s s e s  
of flow in concentrat ion d i spe r se  sys t ems  (soils, b r icks ,  c e r a m i c s ,  etc.) .  These  poss ib i l i t ies  have been 
adequately exploited for  d i spe r se  sys t ems ,  and the theory  of p las t ic i ty  has been developed p r i m a r i l y  for  
p r o c e s s e s  of deformat ion  and metal  flow. The con tempora ry  theory of metal  p las t ic i ty  ( p r i m a r i l y  the mathe-  
mat ica l  theory) has been the subject  of extensive l i t e ra tu re .  To fami l i a r i ze  the r e a d e r  wi ththe plas t ic  p rop -  
e r t i es  of meta ls  and of cer ta in  nonmetal  ma te r i a l s ,  we can r ecommend  the bas ic  work of Nadai [35], inwhich 
many of the aspec ts  of rheology have been covered.  

P las t ic i ty  theory  makes  no provis ion  for  the re la t ionship  between plast ic  deformat ions  and t ime,  since 
this re la t ionship  is insubstantial  for  most  metals ,  as weli as for  many nonmetal l ic  c rys ta l l ine  and a m o r -  
phous solids at low t e m p e r a t u r e s .  However,  at high t e m p e r a t u r e s ,  the effect of t ime  on meta l  deformat ion  
becomes  quite substantial .  Under these  conditions, the meta l  will c reep  with the passage  of t ime  under the 
action of s t r e s s e s .  Creep theory  has been developed to desc r ibe  the c reep  of meta ls :  the theory  of aging, 
of flow, of hered i ty  (the above-ment ioned descr ip t ions  with the aid of mechanical  models ,  opera to r  equations, 
and Vol te r ra  integral  equations - these  a re  all pa r t i cu la r  examples  of the application of the concepts f rom 

t T h e  genera l  case  of a th ree -d imens iona l  s t r e s s ed  state is d iscussed in the Volarovich and Gutkin a r t ic le  
[Zh, Tekh. Fiz . ,  16, No. 3 (1946)] General izat ion to the th ree -d imens iona I  case  of re la t ionship  (7) leads to 
the sy s t em of equations der ived '=" ' Henci~y and by II 'yushin.  
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the theory of heredity) and the theory  of hardening ([35, Vol. 2], [36]).* While the best resul ts  for polymer  
mater ia ls  are  given by the theory of heredity f rom among the above-named theor ies ,  for  metals the most  
sa t is factory resul ts  are found for the equations f rom the theory of hardening, based on the utilization of 
concepts to the effect that a s t ructura l  change takes place in the metal during the process  of metal creep, 
leading to the hardening of the mater ia l  and to a reduction in the creep rate [35, 36]. In s implest  form, the 
equation of state f rom the theory of hardening associa tes  the rate of deformation with the s t ress  and with 
the deformation that has been accumulated. 

The tensor  nonlinearity (as well as the geometr ic  nonlinearity) becomes evident in the fact that the 
principal axes of the s t ress  tensor  do not coincide with the principal axes of the strain tensor,  or of the de- 
formation rate [3]. This noncoincidence is made evident in the above-cited effects of Poynting and Weissen-  
be rg  (see also Markovitz [21, part  1], Reiner  [21, part  1}, Ginn, Metzner [21, part  2]) and in other phenom- 
ena, in par t icular ,  the effect of the expansion in the jet d iameter  on discharge of a solution or of a polymer  
melt f rom a tube (see Shertzer,  Metzner [21, part  2]). Some authors re fe r  to this last phenomenon as the 
Barus effect, using the name of the r e s e a r c h e r  who f i rs t  described the phenomenon during the nineties of 
the last century (see Lodge [33]). 

The geometr ic  and tensor  nonlinear effects were found in the most varied of ma t e r i a l s : t  metals  [3], 
polymer  sys tems,  and air  ([3], Reiner  [21, part  1]). On the basis  of available data we are,  as yet, unable 
to express  an opinion as to whether or not these effects in such diverse sys tems are the resul t  of a single 
factor  or whether various mechanisms are operative in different cases.  In a number of cases,  the geometr ic  
and tensor  nonlinear effects can be predicted on the basis of physically nonlinear relat ionships which make 
use of the concepts of finite deformations different f rom the Cauchy deformations (see, for example, [8]). 
The Poynting effect in metals was sa t i s fac tor i ly  explained by Reiner  [3] on the basis of the tensor  nonlinear 
elast ici ty law which he proposed in conjunction with Hanin, and this law has the form 

3 

aiJ = KoSij ~- Kis~i -4- E Kze~e~1"' (10) 

where r is the component of the s t r e s s  tensor ,  and 6ij is the Kronecker  delta. In the simplest  K0, K l, and 
K 2 are constants for nonlinear mater ia ls  and they may be sca lar  functions of the deformation invariants.  
The right-hand part  of (30) is a second-degree  polynominal with respect  to the component of the s train ten- 
sor; Reiner  and Hanin demonstrated (see [3]) that relat ionships such as (10) for  physically,  geometr ical ly ,  
and tensor  nonlinear mater ia ls  - as complex as you please - contain no te rms  higher than the second degree 
for eij. 

To explain the effects of tensor  nonlinearity in fluids, Reiner  [3] proposes  the use of (10) in which eij 
denotes not only the deformation of the elastic material ,  but the rates  of deformation as well. However, this 
type of relat ionship leads to a different distribution for  the normal s t r e s ses  (for example, in the c learance 
between two disks, of which one is fixed, while the second rotates) than is encountered in the experiments  
associated with the Weissenberg effect descr ibed in the above-cited projects  in which rotation equipment 
was used. 

De Witt, and then Gieseckus (cited in [3]) explained the Weissenberg effect and s imi lar  nonlinear ef- 
fects on the basis of their  proposed relat ionships which made provision for the s t ress  tensor  as a function 
not only of the symmet r i ca l  portion of the velocity gradient (i.e., of the strain rate), but also as a function 
of its nonsymmetr ica l  part  (i.e., the veloci ty of rotation). The relat ionships proposed by De Witt and Gie- 
seckus are  general izat ions,  for  a ductile material ,  of the physical equations of the moment theory  of e l a s -  
t ici ty developed by the Kossero  b ro thers  in the tenth century. 

Phenomenological  theology is not limited to the determination of the laws relat ing s t r e s ses  and de-  
formations for the mater ia ls  being investigated. In and of themselves ,  these laws are of limited value. But 
they are  completely neces sa ry  to examine the various problems of deformation and flow in the continuous 
media which they describe.  The solution of the boundary-value problems for  deformation and flow of rheo-  
logical media form the subject mat ter  for one of the most imporant branches of rheology which, in analogy 
with the mathematical  theory  of elast ici ty and the mathematical  theory of plasticity, may be re fe r red  to as 

*See the Rabotnov monograph entitled: Creep of Structural Elements [in Russian], Nauka (1966). 
)'One of the authors of this survey found the Poynting effect in a solid polymer  - polymethyl methacryla te  
[Mekhan. Pol imerov,  No. 5 (1966). 
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mathemat ica l  rheology.  Because  of the l imited scope of this survey,  we have no opportunity he re  to under -  
take a detailed study of the con tempora ry  methods of mathemat ica l  rheology. We will t he re fo re  l imit  our-  
se lves  to an enumera t ion  of the basic  l i t e ra tu re  containing such information.  

Methods for  the solution of some of the s imples t  p rob lems  of l inear  v i scoe las t i c i ty  (for example ,  p rob-  
l ems  of beams) can be found in the Alfrei  monograph [15], as well as in the a r t i c le  by Baltrukonis and Vai-  
shnav [21, par t  2]. An analys is  of the methods for the solution of quasis ta t ic  p rob lems  of l inear  v i s c o e l a s -  
t ici ty,  when the s t r e s s e s  which a r i s e  in a deformed mate r i a l ,  due to inert ial  fo rces ,  a re  negligibly smal l  in 
compar i son  with the s t r e s s e s  due to external  stat ic fo rces ,  as well as an analysis  of dynamic p rob lems ,  is 
found in the book by Blend [20] and the su rvey  ar t ic le  by Lee [5, 20]. The book by Nowacki [37] is devoted 
to these  same  p rob lems .  

The main difficulty in solving the boundary-value  p rob lems  of v i scoe las t i c i ty  is associa ted  with the 
fact  that the physical  equations descr ib ing  the behav ior  of a ma te r i a l  include t ime.  In the West the genera l ly  
accepted methods of solving the p rob lems  of l inear  v i scoe las t ic i ty  a r e  based on the application of such in- 
tegra l  t r ans fo rma t ions  as the Laplace  t r ans fo rm,  for  example ,  to the overa l l  sy s t em of equations descr ib ing  
the state of a ma te r i a l .  With the aid of the integral  t r ans fo rma t ion  the p rob lem reduces  to the c o r r e s p o n d -  
ing e las t ic i ty  p rob lem and the invers ion of the e las t ic i ty  solution yields the t ime var ia t ion in the picture  of 
the s t r e s s e d - s t r a i n e d  state.  Opera tor  methods have been developed in the USSR for  the solution of s imi l a r  
p rob lems ,  and these a re  based on the use of the so-ca l led  Vol te r ra  principle,  according to which the e l a s -  
t ici ty solution is suitable even for  the cor responding  v i scoe las t i c i ty  problem; it is only in the final resu l t  
that the constant e las t ic i ty  p a r a m e t e r s  a re  replaced by v i scoe las t i c i ty  integral  opera tors .*  

Some prob lems  with regard  to the propagat ion of v i scoe las t i c i ty  waves  a re  covered  in the books by 
Kol ' sk i i  [38] and Davis  [39],t as well as in the a r t i c l e s  by Valanis [21, par t  2], Arnold, Lee,  and Panare l l i  
[21, par t  2]. 

The development  of the theory  of v i scoe las t i c i ty  was motivated in grea t  par t  by the extensive use of 
p las t ics  as s t ruc tu ra l  m a t e r i a l s .  A number  of in teres t ing p rob lems  a rose  in connection with the develop-  
ment of so l id-propel lan t  rocket  engines (see, for example ,  [40], Wil l iams [41], Klosner  and Sadre [21, pa r t  
2], and Moghe and Hsiao [21, par t  2]). 

There  is no need h e r e  to touch upon the p rob lems  of the viscous flow of Newtonian fluids, since these 
p rob lems ,  as noted ea r l i e r ,  a re  the subject  ma t t e r  of hydrodynamics .  The mathemat ica l  theology of non- 
Newtonian fluids was developed p r i m a r i l y  in connection with the p r o g r e s s  in the technology of p rocess ing  
var ious  rheological  media:  po lymer  m a t e r i a l s  and d i spe r se  sys t ems .  In the a r t i c le  by Gore and McKelveys 
[4, Vol. 3] and in [26, 27, 29, 42] we find d iscuss ions  of the p rob lems  of flow for  ce r ta in  non-Newtonian fluids 
(p r imar i ly  of the Os twa ld -DeVa le  medium, subject  to the "power law" (6) of flow). A survey  of the solutions 
for  the p rob l ems  of flow of non-Newtonian fluids in v i s c o s i m e t e r s  of var ious  design is given by Oka [4, Vol. 
3]. A number  of p rob lems  in nonlinear rheology a re  covered in the F red r i ekson  [7] and Wilkinson [28] 
monographs,  as well  as in the ar t ic le  by G e r r a r d  and Philippoff [21, pa r t  2]. 

In [43] p rob lems  concerning the flow of v i scoplas t ic  m a t e r i a l s  a r e  discussed.  In r ecen t  y e a r s  the 
theory  of flow in these  m a t e r i a l s  and p rob lems  a r i s ing  f r o m  it have been developed intensively  in the USSR. $ 

*See the Rabotnov monograph entitled: Creep  of Structural  Elements  [in Russian],  Nauka (1966); see also, 
A. R. Rzhanitsyn,  The Theory  of Creep  [in Russian],  Stroiizdat,  Moscow (1968). 
tSee also Kh. A. Rakhmatul in  and Yu. A. Dem'yanov,  Strength under  Intensive S h o r t - T e r m  Loads [in Russian],  
FM (1961). 
$The following books are  devoted to the hydrodynamics  of v iscoplas t ic  fluids in the pe t ro leum industry:  R. I. 
Shishchenko, The Hydraul ics  of Clay Solutions [in Russian],  Aznefteizdat (1951); A. Kh. Mirzadzhanzade,  P r o b -  
l e m s  in the Hydrodynamics  of Viscoplas t ic  and Viscous Fluids in the Pe t ro leum Industry [in Russian],  Aznef-  
te izdat  (1959). Cer ta in  p rob l em s  in the flow of v iscoplas t ic  peat sy s t ems  are  covered in the book by N. N. 
Kulakov [Introduction to the Phys ics  of Peat  [in Russian],  Gos~nergoizdat  (1947)]. A number  of books by 
Soviet authors ,  devoted to a theore t ica l  examinat ion of the p rob lems  in the flow of v iscoplas t ic  ma te r i a l s ,  
is cited in the Volarovich su rvey  [Kolloid. Zh., 16, No. 3 (1954)]. In recen t  yea r s ,  in the a r e a  of the theory  
of the flow of v i scoplas t ic  m a t e r i a l s  successfu l  work is being done by Gutkin [Kolloid Zh., 17, No. 6 (1955); 
19, No. 1 (1957); 23, No. 3 (1961); 24, No. 1 (1962)], by Myasnikov and Mosolov [Prikl .  Mekhan. i Tekh. Fiz . ,  
N-~s. 2 and 5 (1961"~; No. 4 (1962); P'-rikl. Matem. i Mekhan., 29, No. 3 (1965); 30, No.4 (1966); 31, No. 3 (1967)]. 
Extensive r e s e a r c h  intothe rheological  p rope r t i e s  (in par t i cu la r ,  the v iscoplas t ic  p roper t ies )  of clay suspensions  
has  been ca r r i ed  o ~ b y  Academician Ovcharenko, and his c o - w o r k e r s  (see F. D. Ovcharenko, N. N. Krugii tski i ,  S. 1 ~ 
Nichiporenko, and E. G. Agabal 'yants ,  Mountain Lea ther  in Dri l l ing [in Russian],  Tekhnika, Kiev (1968), and others) .  
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The p rob lem of the propagat ion of a s t r e s s  wave in an e l a s t i c - v i s c o p l a s t i c  ma te r i a l  whose mechan i -  
cal model is a combinat ion of Hooke, Newtonian, and St. Venant e lements  connected in para l le l  is examined 
in the a r t i c le  by Cr i s tesku  and Prede leanu  [21, pa r t  3]. 

Extensive  l i t e r a tu re  [44-50]f is devoted to the solutions of p rob lems  f rom the mathemat ica l  theory 
of plas t ic i ty;  unfortunately,  the use of these  solutions is l imited vir tual ly  in its ent i re ty  to metal l ic  s y s t e m s .  

A solution is given in the Phil l ips and Tsan Sun Chang a r t i c le  [21, par t  1] for  the p rob l em of the d i s -  
t r ibut ion of s t r e s s e s  and s t r a ins  in a hardening medium in an underground explosion (for example ,  a nuc lea r  
expl os i on). 

In the above-c i ted  a r t i c les  on the hydrodynamics  of non-Newtonian fluids it is p r i m a r i l y  l amin a r  flows 
with which we a re  concerned.  Engineers  frequently deal with the turbulent  flow of non-Newtonian :fluids in 
actual  prac t ice ,  and for  these ,  for example ,  in flow through tubes,  the re la t ionships  between flow ra te  and 
p r e s s u r e  d i f ference  will differ  f r o m  the analogous re la t ionships  in the case  of a l amina r  r eg ime .  A spec ia l  
chap te r  in [29] is devoted to the p rob lems  of turbulent  flow for  a l amina r  fluid. As is well  known, the ex i s -  
tence of a l a m i n a r  or  turbulent  flow reg ime  depends on the Reynolds number  Re for  the given flow; for  Re 
< Re* (Re* is the c r i t i ca l  Reynolds number)  the flow reg ime  is laminar ;  for  Re > Re* the r eg ime  is tu rbu-  
lent.  The magnitude of the Re n u m b e r  also de t e rmines  the f r ic t ional  losses  for  the flow of a fluid in a given 
channel. 

For  anomalous fluids the Reynolds number  cannot be de te rmined  in the usual fashion, i .e. ,  as in the 
case  for  viscous  fluids, s ince the effect ive v i scos i ty  of the anomalous fluid is a va r i ab le  quantity that is a 
function of the veloci ty  gradient .  Determinat ions  of the Reynolds numbers  and other  s i m i l a r  c r i t e r i a  
a re  given in [29] for  var ious  anomalous fluids subject  to the "power  law" of O s t w a l d - D e V a l e  flow, subject  
to the Bingham law, etc.$ 

In connection with the cons idera t ion  of the p rob lem of c r i t ica l  Reynolds numbers ,  it is appropr i a t e  at 
this point to r e f e r  to the two effects  observed  in the flow of viscous  and v i scoe las t ic  fluids. The so -ca l l ed  
Toms effect (see Toms [10], Oldroyd [10], and Fabula [21, par t  3]) involves the fact that insignificant ad-  
ditions of h igh -molecu la r  subs tances  to the v iscous  fluid (for example ,  to water)  leads to an ex t r eme ly  g rea t  
inc rease  in the c r i t i ca l  Reynolds n u m b e r  Re*. Thus, for  example ,  Kel ley and Brodnyan [21, par t  2] observed  
an inc rease  in Re* f r o m  2000 to ~7000 in this case .  Simultaneously with the inc rease  in Re* there  is a 
pronounced drop in the loss  of dynamic head. No sa t i s f ac to ry  physical  explanation for  the Toms  effect  has 
apparent ly  yet  been found.** 

The second effect  (some r e s e a r c h e r s  r e f e r  to it as the effect  of "hard  turbulence")  shows up in the 
d i scharge  of po lymer  mel ts  f rom tubes,  nozzles ,  dies,  etc.; it is occasional ly  observed  in the ext rus ion of 
p o l y m e r s .  At high flow veloc i t ies ,  the su r faces  of the products  occasional ly  show signs of rippling, wav i -  
ness~ and sharkskin  defects ,  etc.  (see Benbow, Brown, and Howells [30]). This effect  is a ssoc ia ted  with the 
fact  that the po lymer  mel t  exhibits substant ia l  e las t ic i ty  re la t ive  to the shear ing  s t ra ins ,  and in the case  of 
high flow veloci t ies ,  when the potential  energ~y of deformat ion  is r a t h e r  g rea t ,  se l f -osc i l l a t ions  a r i s e  within 
the ma te r i a l ,  leading to the appearance  of su r face  d e f e c t s . i t  

?See also the books by the Sovie tauthors :  V. V. SokoIovskii ,  The Theory  of P las t ic i ty  [in Russian],  GTTI 
(1952); L. M. Kachanov, The Fundamentals  of the Theory  of P las t ic i ty  [in Russian],  GTTI (1956); D. D. Ivlev, 
The Theory  of Ideal P las t ic i ty  [in Russian],  Nauka (1966). 
Sin the above-c i ted  monograph,  Shishchenko de te rmines  the genera l ized  Reynolds n u m b e r  f r o m  the s a m e  
fo rmula  as for  a viscous  fluid; however ,  in the place  of ord inary  v i scos i ty ,  use is made of the effect ive v i s -  
cosi ty  in this re la t ionship .  
**In the USSR the Toms effect  has been studied pe r s i s t en t ly  by Barenbla t t  and his c o - w o r k e r s  [see, for  
example ,  Pr ik l .  Mekhan. i Tekh. Fiz . ,  No. 3 (1965); No. 5 (1965)], as well as in the a r t i c l e s  by ]~l 'perin and 
Smol ' sk i i ,  with the i r  c o - w o r k e r s  [see Inzh . -F iz .  Zh., No. 8 (1964); 10, No. 2 (1966); Izv. AN BSSR, Ser.  F iz . -  
Tekh. Nauk, Nos. 2 and 3 (1965)]. A patent was granted  to ]~l 'perin f-or a method of reducing drag  in tubes and 
channels (USSR Patent  No. 169955, effect ive as of December  6, 1954). 
t~fThis effect  was studied by Vinogradov, Malkin,and Leonov [Dokl. Akad. Nauk SSSR, 151, No. 2 (1963); Kol-  
l o i d - Z . u . Z .  P o l y m e r e ,  191, No. 1 (1963)]. They demons t ra ted  that the appearance  of the osci l la t ions a s s o -  
ciated with the effect of "hard turbulence  ~ is governed by the magnitude of the s ingular  c r i t e r ion  which the 
authors  r e f e r  to as the e las t ic  Reynolds number  and which r e p r e s e n t s  the measu re  of the rat io  between the 
v i scos i ty  forces  and the e las t ic i ty  fo rces .  
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A number of specific problems in the hydrodynamics of non-Newtonian fluids arises in connection with 
the problems of their boundary layer.* 

In conclusion of this survey, we must cite the Ziegler book [51]. This book contains an interesting 
attempt to provide a specific completed formulation to the phenomenological approach to the problems of 
rheology. In particular, it contains a unique discussion of the principles of the thermodynamics of irrever- 
sible processes, attempts tovalidatethese, in addition to a systematic demonstration of the importance of 
applying these principles to the description of media with dissipation. 
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